O3 Project
Network Business Innovation by SDN WAN Technologies

16 October, 2014

Yoshiaki Kiriha

O3 project (NEC, NTT, NTT Communications, Fujitsu, Hitachi)
Agenda

- Trend on Future Information Networking
- Innovation through O3 User-oriented SDN
- O3 Technologies for SDN WAN
- SDN Use Cases in O3 Project
- SDN Ready Open Source Software
- Conclusion & Future Work
Innovation through O3 User-oriented SDN
Toward open User-oriented SDN

3 Contributions for User-oriented SDN
(1) Open development with OSS
(2) Standardization of architecture and interface
(3) Commercialization of new technologies
O3 Project Concept, Approach, & Goal

- **Open, Organic, Optima**
 - Anyone, Anything, Anywhere
 - Neutrality & Efficiency for Resource, Performance, Reliability, ...
 - Multi-Layer, Multi-Provider, Multi-Service

- **User-oriented SDN for WAN**
 - Softwarization: Unified Tools and Libraries
 - On-demand, Dynamic, Scalable, High-performance

- **Features**
 - Object-defined Network Framework
 - SDN WAN Open Source Software
 - SDN Design & Operations Guideline

- **Accelerates**
 - Service Innovation, Re-engineering, Business Eco-System
O3 Deliverables: User-oriented SDN

- Provides **Orchestration** for different user requirements

Management for AP providers (ex. Skype, Lync, Facebook)

Management for service providers (ex. IaaS, PaaS, SaaS)

Management for carrier network (ex. Design, Deploy, Operate)

I'd like to automate service management including IT systems.

I'd like to control and operate n/w in fine-grained manner.

Flexible n/w platform for various requests from users.

I'd like to change AP performance dynamically.

Northbound API (Innovation for users)

Open Network Platform

Southbound API (Innovation among vendors)

Packet | Optical | Mobile

Physical network
O3 Object-defined Network Platform

- Network is abstracted as graph of base Objects
- Control functions are the operators for the Objects
- Different types of NW are defined through extension of Objects

AP provider

Service provider

Carrier

Extended Operator function (for AP provider)

Basic Operator function

Extended Operator function (for Service provider)

Extended Operator function (for Carrier)

Specify only the bandwidth, delay, SLA on the abstraction layer.

Find-grained control of routing, traffic, fault monitoring, and operation management.

Open Network Platform (ODENOS)

Driver (Protocol-object convertor)

- OpenFlow
- Overlay
- Optical/packet transport
- Mobile

©O3 Project

SDN & OpenFlow World Congress 2014 @ Dusseldorf
O3 Technologies for SDN WAN
Established the SDN guideline for carrier networks which is required to design, deploy and operate the large scale of SDN in the following steps:

Drafting guideline
- Draft includes
 - Criteria to select SDN equipment
 - Capacity
 - Capability
 - Reliability etc.
 - Criteria for evaluation
 - Flexibility
 - Time to deploy SDN etc.
 - Evaluation techniques
 - Design parameters identification
 - Testing and reporting templates

Testing & analyzing
- Evaluation techniques
 - Test bed setup
 - HW/SW SDN feature evaluation
 - Design parameters certification
 - Test results analysis

Completed Doc.
- Final document
 - Test results
 - Analysis reports
SDN Software Switch: Lagopus

- **SDN 10Gbps S/W forwarding node with 1M flows**

![Diagram of SDN Software Switch: Lagopus]

- Large scale flow detection and flow search

- **fff**: Flexible parallel Flow processing Framework

- Control plane and management plane

- Fast software-based data plane

- A prototype of SDN software switch

©O3 Project

SDN & OpenFlow World Congress 2014 @ Dusseldorf
Signal Interwork between Optical & Packet

- Enables
 a wide variety of service quality & rapid service tune-up

Conventional configuration

Configuration at this study
Virtual Wireless Networks

- Support multiple virtual networks over wireless networks while avoiding degradation of high priority traffic even when traffic demand and data rate of wireless link changes over time
SDN Framework: ODENOS

- **Network Abstraction Model:** Hierarchical
 - Node, Port, Link, Flow, Packet
- **Enables easy Extension & Customization**
Abstract Network Operators in ODENOS

- Slicer, Federator, Aggregator, Link-Layerizer
NW Operator: Slicer

- **Slicer**: creates copies of the network object based on the given policy: Edge ports, TCP/UDP port number (i.e., application)
- **Enables multi-tenancy, multiple applications**
NW Operator: Aggregator & Federator

- **Aggregator:** Creates single big-switch abstraction
- **Federator:** Connects multiple networks
- **Use Case:** Multi-domain controller (with controller hierarchy)
NW Operator: Link-Layerizer

- **Link-Layerizer**: Creates a network from the upper-layer nodes and lower-layer “paths” (flows)
- **Use Case**: Unified Control of Multi-layer Networks

![Diagram of Link-Layerizer](image)
SDN Use Cases in O3 Project
Proof-of-Concept: Physical Configuration

- WAN experiments with Multi-vendor Equipment

Data center 1

- VM
- NEC VTEP
- NEC OFS
- NTT vSW

Data center 2

- NEC VTEP
- VM
- JGN-X

Data center 3

- NEC VTEP
- VM
- JGN-X

Inter-DC network (emulated)

- Hitachi PTN
- Fujitsu OTN
- Fujitsu OTN
- Hitachi PTN

VTEP: VXLAN Tunnel End Point
OFS: OpenFlow Switch
vSW: Virtual OpenFlow Switch
PTN: Packet Transport Node
OTN: Optical Transport Node
PoC on Multi-Layer & Domain Control

Overlay Control

Transport Control

OpenFlow Control
PoC on Network Visualization

- Multi-layer topology visualization from logical network instances
- Inter-layer correlation mapping through operators
- Trouble shooting, failure analysis, etc.
PoC on Packet & Optical Integrated Mgmt

- Control of transport network based on simple requirements from users such as transmission speed and response time
- Flexible multilayer resource utilization to meet user requirements

©O3 Project
SDN Ready Open Source Software
SDN Software Switch: Lagopus

“Lagopus” features and targets

- High-performance packet processing
 - Support for 1M flow control rules
 - Forwarding performance over 10 Gbps

- Support for various protocols
 - Extensive support for latest stable specification OpenFlow 1.3.4 (including MPLS, PBB, and QinQ in wide area networks)
 - Top score in “Ryu certification tests”
 http://osrg.github.io/ryu/certification.html

- Support for various config/mgmt interfaces
 - OF-CONFIG, OVSDB, CLI, SNMP, and Ethernet OAM (including features under development)

- Modular architecture
 - New protocol modules or management interface modules easily deployed on “unified configuration data store” basis.

- Support for multiple data planes
 - General-purpose servers (IA servers)
 - Parallelized and multi-threaded packet processing
 - I/O acceleration by leveraging Intel DPDK
 - Bare metal switches (under development)
 - For general-purpose hardware switches

- Open source
 - Released as open source software at http://lagopus.github.io/
SDN Framework: ODENOS

Network abstraction model

Base class
- Inheritance

OpenFlow
- Graph of “flow” networks

Overlay
- Graph of tunnels

VTN
- Graph of vBridges and vRouters

Packet/transport
- Graph of transport paths

Network Abstraction Model
- Network Abstraction Model
 - Topology
 - Flow
 - Packet

Topological representation
- graph-based representation of network structure and statistics

Flow
- point/multipoint-to-point/multipoint communications (OpenFlow path, MPLS / optical paths, and overlay tunnels)

Packet
- OpenFlow packet_in/out.

Network control structure model

LinkLayerizer
- Combination of network layers

Slicer
- Creation of virtual networks

Aggregator
- aggregation of topology

Federator
- Federation of topology

Instance of various logical network

Operators for network instances

Design a SDN controller as an arbitral combination of logical network and operators
Conclusion & Future Work
Conclusion & Future Work

- O3 project provides SDN ready environment
 - SDN Design, Deployment & Operations Guideline
 - SDN Framework: Object-defined Network Platform
 - Network Abstractions and Programming Model
 - SDN-enabled WAN nodes
 - SDN Software Forwarding and Control
 - Optical, Packet and Wireless Network Control

Jump-start with O3 Open Source Software!!

Future plan

<table>
<thead>
<tr>
<th>Achievement</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3 Website</td>
<td>Released</td>
<td></td>
</tr>
<tr>
<td>SDN guideline</td>
<td>Plan to release by 3/E</td>
<td></td>
</tr>
<tr>
<td>Common control FW (OSS)</td>
<td>Plan to release Dec/E</td>
<td></td>
</tr>
<tr>
<td>SDN-enabled WAN nodes (OSS)</td>
<td>Lagopus: Released</td>
<td>Others: by 3/E</td>
</tr>
<tr>
<td>Lagopus---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©O3 Project
This research is executed under a part of a “Research and Development of Network Virtualization Technology” program commissioned by the Ministry of Internal Affairs and Communications.
Trend on
Future Information Networking
Software-Defined Networking (SDN)

- SDN is a technology to innovate new services and to accelerate businesses
- Network will be designed, deployed and operated by business application and orchestration system

©O3 Project

SDN & OpenFlow World Congress 2014 @ Dusseldorf
Commercial SDN technologies are mainly applied to "closed domain networks", such as enterprise, datacenter, and mobile core.

- **Enterprise**
 - Secure virtual network infra.

- **Data center**
 - Global multiple distributed DCs

- **Mobile core**
 - Load-based flexible resource allocation

Open & Agile end-to-end service deployments and operations to satisfy service SLA/QoS for various users